GET /api/v2/video/1569
HTTP 200 OK Vary: Accept Content-Type: text/html; charset=utf-8 Allow: GET, PUT, PATCH, HEAD, OPTIONS
{ "category": "PyCon CA 2012", "language": "English", "slug": "dancing-with-big-data-disco-inferno", "speakers": [ "Tim Spurway & Mazdak Rezvani" ], "tags": [], "id": 1569, "state": 1, "title": "Dancing with Big Data: Disco + Inferno", "summary": "In our search for a better Map/Reduce framework we found Disco, an\nErlang/Python based Map/Reduce framework that's small, fast, elegant,\nunderstandable. We needed a way to tame the power of Disco and that's when we\ncame up with the Inferno project which takes even more complexity out of\nMap/Reduce. With Inferno you concentrate about what you want from your data\nand not the underlying complexity.\n\n", "description": "", "quality_notes": "", "copyright_text": "", "embed": "<object width=\"640\" height=\"390\"><param name=\"movie\" value=\";hl=en_US\"></param><param name=\"allowFullScreen\" value=\"true\"></param><param name=\"allowscriptaccess\" value=\"always\"></param><embed src=\";hl=en_US\" type=\"application/x-shockwave-flash\" width=\"640\" height=\"390\" allowscriptaccess=\"always\" allowfullscreen=\"true\"></embed></object>", "thumbnail_url": "", "duration": null, "video_ogv_length": null, "video_ogv_url": null, "video_ogv_download_only": false, "video_mp4_length": null, "video_mp4_url": "", "video_mp4_download_only": false, "video_webm_length": null, "video_webm_url": "", "video_webm_download_only": false, "video_flv_length": null, "video_flv_url": "", "video_flv_download_only": false, "source_url": "", "whiteboard": "", "recorded": "2012-11-11", "added": "2012-11-14T09:09:10", "updated": "2014-04-08T20:28:26.812" }