Contribute Media
A thank you to everyone who makes this possible: Read More

TorchInductor CPU Backend Advancements: New Features and Performance Improvements

Description

This presentation provides an update on the latest advancements in the TorchInductor CPU backend since the last conference to bring best-in-class CPU performance for broad DL workloads. We will discuss new features and performance enhancements, including: • Max-autotune support with codegen for GEMMs, boosting performance for GEMM-related operations • Enhanced vectorized codegen support, now covering all data types beyond floating points with flexible vector factors, and optimized loop scheduling • Comprehensive quantization support, including weight-only-quantization (WoQ), and optimizations for dynamic quantization and quantization-aware training • Improved Attention support, featuring attention masks and optimizating SoftMax via flash attention v2 etc. • AOTInductor support, enabling high-performance inference with frozen weights • Native Windows support, with improved vectorization capabilities These advancements, combined with ongoing optimizations, have resulted in significant performance improvements since PyTorch 2.1, demonstrated through extensive benchmarks and large language models (LLMs).

Details

Improve this page