Description
As scientific computing pushes towards extreme scales, the programming wall is becoming more apparent. For algorithms to scale on new architectures, they often must be rewritten accounting for completely different performance characteristics. A handful of the communities fastest codes have already turned to automatic code generation to tackle these issues. Code generation gives a user the ability to use the expressiveness of a domain specific language and promises for better portability as architectures rapidly change.
In this presentation, I will show Ignition, a project for creating numerical code generators. Python and SymPy make exceptional languages for developing these code generators in a way that domain experts can understand and manipulate. I show examples how Ignition can generate several different parts of geophysical simulations.