Description
This talk illustrates how machine learning models to detect harmful algal blooms from satellite imagery can help water quality managers make informed decisions around public health warnings for lakes and reservoirs. Rooted in the development of the open source package CyFi, this talk includes insights around identifying when your model is getting the right answer for the wrong reasons, the upsides of using decision tree models with satellite imagery, and how to help non-technical users build confidence in machine learning models. The intended audience is those interested in using satellite imagery to monitor and respond to the world around us.